
The problem of the prapagation of a blast wave in a heat-conducting gas 
with sphericaI. s~nuaetry is considered in tI,zf . At the initial instant 
g = 0 there is an inst~t~eous releass of 8 finite mount of energy Eg 
at the point r = 0 fn gas which is at rest. The problem is self-six&Mar 
131 if w8 neglect the initial pressure p,, and the coefficient af heat 
condUCtivitY is taken equal to K~+‘~ (where K~ ii’4 IL constant and ?’ iS 
the temperature). IN the papers cited above a solution is constructed by 

using the Hugonfot conditions at the shock under the assuraption that the 
temperature nndergoes 8 dis~o~t~nu~~~~ 

It Se demonstrated below that the assumpticra oi discontinuity of 
temperature makes the problem many-valued, whereas with continuity of 
temperature the solution is obtained uniquely. Moreover there exists a 
constant A whfch divides all solutions of the problem into two types. 
and numsri~al solutions of the proMew+ are obtained for both ~~aaes, 

We notice that the problem of blast in a heat-conducting g&s with 
cylindrical symmetry under the assumption of continuity of temperature 
at the shock is solved in [41. 

Hers u is velocity, p is density, R is the gas Constant, r la the 
radius and y is Poil~son”5 adiabatic elrponent. The baundary conditions 
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al-e 

at the center 

U(0, 1) = 0 

at the front of the disturbance r,(t) 

24 (To, t) = 0, P (1’0, tf = PO, T (ro, t) = 0 

at the shock rl(t) 

PI @I- c) = ~2 (ua - cl, PI (al - CY + RPJI = ~2 (uz - c)* + RpaTl 

(1.2) 

(l.3) 

(1.4) 

Here c is the shock velocity, the index 1 refers to quantities before 
the shock front and the index 2 to quantities behind the shock front. 
Moreover, the required functions must satisfy the equation 

(1.5) 

Since the problem is self-similar, we have 

u = -$&(k), p = ‘3 peg (h), T= z;:-;;’ e(h), h= + (1.6) 

Here A, o[ are dimensionless constants. determined during the solution 

of the problem, co is the velocity of propagation of the disturbance. 

After substituting (1.6) in equations (1.1) and (1.2) to (1.5) we ob- 
tain the following system of ordinary differential equations 

f- 
~+-_XL$LQ+~ (gQ)’ = 0, i f - * A) g’+g 

A@‘& - ““;‘+; I) g@f + 6g 0’ - T& f) (f2 + @) = 6 

The dimensionless constant A is given by 

(1.7) 

III deriving the last equation of the system (1.7) we have used the 
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following integral, found in [31: 

The constant of integration is chosen from the conditions at the front 
of the disturbance (1.3). 

The boundary conditions (1.2) to (1.4) and expression (1.5) for the 
dimensionless functions take the form: 

f(1) = 0, 
7-l 

g(l) = rfi’ 0 (1) = 0 (1.3) 

f (0) = 0 (f.9) 

g1 ( & f1- hl) = gz (& f2 - ?a) (1.10) 

( -?- g1 r-l-1 
- 1) 

fi- q + $_ $12 g,01= g2 i 
Z(y--1) . 

-.?- 12 - q2 + ir + f)2 r+l 82% 

6gt (& ii- AI) w + e,) + I’;+- Ii gl%lf* - AB;i~%; = 

= 6g2 
( 

& 12 - AI) (f22 + %,) + i2r(r3-ii) g2%1f2 - A%:‘*%2t 

1 -= &x(0.4)2 l 
a (r + 1) (7 - 1) s g ff2 + 0) J.W 

0 
(1.11) 

The problem is reduced to integration of the system of ordinary differ- 
ential equations (1.7) with the boundary conditions (1.8) and (1.9). 

2. Numerical computation shows that there does not exist a continuous 
solution satisfying the conditions (1.8) and (1.9). The front of the dis- 
turbance is determined bs the point 

Z(h=l, 0 =o, f=O, g = (7 - 2) I(7 + I)) 

which is a singular Point for the system (1.7). 

In the neighborhood of the point I there exists an approximate repre- 
sentation of the solution which is independent of arbitrary constants 
and has the form 

Making use of this expansion, we can try to construct a continuous 
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solution. But while integrating numerically towards the center we en- 
counter the point A’, at which f’(A’) = m (Fig. 1). Accordingly, the con- 
tinuous construction of a solution is impossible and at a certain point 
A, we must assume a dlscoutinuity (A0 < A, < 1). 

Solutions incorporating a discontinuity can be sought in two ways: 
assuming that the temperature changes continuously at the shock, or 
assuming a discontinuity. The latter assumption make8 the solution of the 
problem multi-valued, since together with the arbitrary parameter A, yet 
another parameter makes its appearance: at the temperature discontinuity 
the three Augoniot conditions connect the four unknown quantities 8,. f2. 
tx2' 9,'. The quantities before the front are known from numerical inte- 
gration of the system (1.7). Accordingly, for each fixed value of A,, by 

variation of the second parameter we can 

f 

I\ 

satisfy the condition at the center f(0) =O 
and obtain a solution satisfying the postu- 
lated problem. In [ll the solution is found 

/ 

for A, = 1. However, by changing A, we can 
obtain an infinite number of solutions of 
one and the same problem, which according to 
physical sense has a unique solution. 

0 A”. R If the temperature at the shock is assumed 

to be continuous, then there remains one 
Fig. 1. arbitrary parameter A,, determined from the 

conditions at the center f(O) = 0. The solu- 
tion in thls case is obtained uniquely. Below it will be shown that solu- 
tions with discontinuous temperature are unstable and pass into the solu- 
tion with continuous temperature. 

Accordingly, we shall assume the temperature to be continuous and take 
Hugoniot’s conditions in the form (1.10). The solution must leave the 
point I and satisfy the condition at the center, i. e. it must pass through 
the point 

zz (h = 0, f = 0, 8 = 80, g = go) 

where 8, and g,, are as yet undetermined constants. The center is a 
singular point of the system (1.7). and in its neighborhood the following 
expansion 111 is valid 

' 
g=go+3BOEb' 

Aeok 
(2.2) 

For numerical integration of the system (1.7) it is convenient to pre- 
sent it in the form 
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0’ = 1% 
(7 + 1) Ato ( (7--1)w+ [ f- 7+ h] (P$ e)) (2.3) 

r=([ 3 (T + i) 
4 f- 7+ B’][j- y A] + 7y fjj) ([f_ 7y q_ T+)-’ 

f=-(d [f'+2;](f-7yh)-1 

The behavior of the integral curves close to the center is approri- 
mately described by the following expansion, which is obtained from 
system (2.3) if in the right-hand sides of it we neglect terms of a 
higher order of smallness 

j = ch4 + 3 (7 + i) go 
5 AeO’,, La+...1 e=eo+..., g=go+. . . (2.4) 

In numerical integration of the system (2.3) in the direction from 
the point 

to the point II the integral curves spread out so quickly that in practice 
it becomes impossible to integrate in this direction because of rounding- 
off errors. In order to make the calculation stable it is necessary for 
the second equation of the system (2.3) to be integrated in the stable 
direction - from point II to point III - and the other two equations from 
point III to point II. In this case, for solution of the two-point bound- 
ary problem with A \< A > 0 (the value of A is determined below) we can 
construct, just as in T71, a convergent itegation process. Suppose that 
A, is fixed; then from the conditions (1.10) we can find f2 and g2 in 
terms of the known Quantities A,, 81, fl and gl 

7+i II h- 2 (T - h= 1) 81 
2 (7 + lP h --2fl/(r+1) 1 

(7 + IT 
' g2= 2(7-i)& ( &Y fi)* a(2.5) 

Let us take A = A,, lying close to zero, so that to a sufficient 
degree of accuracy we can use the expansion (2.2). Let us assume the 
function f in the interval [A,, 
A = A,. 

A,] after which, knowing 0, and gg when 
we integrate the first and third equations of the system (2.3) 

and determine 8(O) and g(0). Starting from A = A, according to the ex- 
pansion (2.2), and solving the second equation of the system (2.3). we 
can improve f, and so on. The process described is reiterated until such 
time as the required accuracy is attained. 
fzo when A = A,. 

As a result we obtain a certain 

fzO = f*. 

By means of trial and error h, is chosen so that 
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3. When A > A the numerical solution of the problem is appreciably 
more complicated: Between the points II and III there occur two more 
singular points, through which the required solution passes. For an ex- 
planation of the nature of the singularities arising, let us consider the 
system (2.3) when A = a~. Let us consider the second equation of the system 

A similar equation is considered in [51. When A >O it has three 
singular points: 

saddle 

node 

D (A= 0, f = 0) 

saddle 

C (L= 3(r+i) 
8 (T$ e,>‘k, f= 

f=O) 

f r+ es)) 
Fig. 2. 

In the general case, when A # a, A > A , 

the coordinates of the singular points a& the nature of the behavior of 
the integral curves are determined during the process of solution of each 
actual problem. 

Numerical solution was carried out for y = 1.4. It turned out that the 
border1 ine constant A is included between the limits 0.0633 < A < 0.1666. 

Uhen A <A a solutio; of the first type occurs. It is found by ihe ite- 
rative method described in Section 2. If A > A , then numerical integra- 
tion is carried out bg the same iterative methid, but complicated by de- 
termination of the function f, since for the 8 and g found on each itera- 
tion the second equation of the system (2.3) will have two more singular 
points B, and Cl between the points Dl and (A,, fzO). For A = 0.1666 the 
qualitative behavior of the integral curves agrees with that obtained 
when A = a, i.e. the point B1 is a node and Cl is a saddle (Fig. 2). 
Numerical computations show that as A increases the nature of the 
singular points B1 and Cl does not change, and already when A > 1 we can 

take 8’(A) = O(0 <A <h,) and make use of equation (3.1). 

Integration of the equation for f must always be taken in the stable 
direction, taking account of the behavior of the integral curves: from 
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Cl to B,. from C, to (h,, fzO), from Dl to Bl and at the points Bl and C, 

making use of the following expansion for f 

/t.= b*v/62 
h 2a 

T-1 
c=T tY,a+-j- 

r---1 (y 
- fk- 2 k ]-(T-1) (Wk - %) 2 

where hk, fk, 8, are referred to the respective singular Point. 

4. Accordingly, a blast in a heat-conducting gas with the coefficient 
of thermal conductivity K = K~T’/~ is described by a self-similar solu- 
tion with continuity of temperature. The density p and the velocity u 

-6 

u .B .4 .6 .B 

Fig. 3. 

undergo discontinuities satisfying the 
Hugoniot conditions with continuity of 
temperature. The disturbance in the 
spherical case, in contrast to the 
cylindrical case, when K = K~, propagates 
with finite velocity. 

The problem with y = 1.4 has solutions 
of two types: the solution of the first 
type, when there are no singular points 
between the center and the shock. and all 
quantities vary smoothly; and the solu- 
tion of the second type. when there are 
singular points between the center and 
the shock, and the required solution 

passes through them. At a point lying close to the center the functions 
f(h) and g(A) undergo a jump. This point corresponds to a weak discon- 
tinuity. Through the other point, which is a saddle, the solution passes 
in a smooth fashion. 

The type of solution is determined by the value of the dimensionless 
constant A. If y = 1.4, then the value of the borderline constant A is 

included between the limits 0.0833 < A < 0.1666. When A < A the silu- 
tion is of the first type, whilst if A*> A the solution is if the second 
type. Numerical integration of the problem’was carried out for the 
following values: A = (1) 0.0417. (2) 0.0833, (3) 0.1666. (4) 1.048. In 
Figs. 3 to 5 are shown the curves for (O-3). the symbol (0) denoting the 
solution of Sedov. corresponding to A = 0. The values of the dimension- 
less quantity a are respectively equal to: 
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(0) 0.117.10, (I) 0.760.10, (2) 0.789.10*, (3) 0.4OO.W, (4) 0.240. IO8 

If we fix the initial parameters y, R, Eo, p,, and vary only the con- 
stant ~1, then correspondingly the quantity A will also change, being 

Fig. 4. 

Fig. 5. 

linearly dependent on K~. Suppose that K~ - 0, then A - 0 also. This 
means that the influence of heat conduction disappears and the solution 
mast tend in the limit to the well known solution of Sedov’s problem on 
blast in gas without allowance for heat conduction M. In fact, from 
the graphs presented it follows that for decreasing A the quantity h, 
tends to unity and the solution with continuity of temperature tends to 
the solution with discontinuous temperature. 

For large values of A and correspondingly large values of K the in- 
fluence of thermal conductivity becomes decisive, the point of discon- 
tlnuity of the functions f and g approaches h = 0. 

The solution obtained is stable. Various existing methods enable us 
to find approximately the solution of a wide class of problems, includ- 
ing some which are not self-similar. If the instantaneous release of a 
finite amount of energy E, occurs not at the point r = 0, but in a 
certain sphere of radius Rc then the problem is no longer self-similar. 
But the solution for finite R, tends with increasing time towards the 
solution already found. This assertion was verified by a separate calcu- 
lation on a fast computer. The initial distribution of u, T, p for 
O< r <RRo was postulated arbitrarily, but taking account of the fact 
that B = E,. In particular, for an initial profile we could select any 

solution with discontinuous temperature, e.g. the solution obtained in 
[ll . In any case the motion under consideration converges to the Self- 
similar regime already obtained. The solutions with discontinuous 
temperature are unstable and change into the solution with continuity of 
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temperature. 

In conclusion the author expresses his thanks to N.N. Ianenko for 
valuable comments. 
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